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Abstract—Image segmentation is a key task in computer vision and image processing with important applications such as scene
understanding, medical image analysis, robotic perception, video surveillance, augmented reality, and image compression, among others,
and numerous segmentation algorithms are found in the literature. Against this backdrop, the broad success of Deep Learning (DL) has
prompted the development of new image segmentation approaches leveraging DL models. We provide a comprehensive review of this
recent literature, covering the spectrum of pioneering efforts in semantic and instance segmentation, including convolutional pixel-labeling
networks, encoder-decoder architectures, multiscale and pyramid-based approaches, recurrent networks, visual attention models, and
generative models in adversarial settings. We investigate the relationships, strengths, and challenges of these DL-based segmentation
models, examine the widely used datasets, compare performances, and discuss promising research directions.

Index Terms—Image segmentation, deep learning, convolutional neural networks, encoder-decoder models, recurrent models,
generative models, semantic segmentation, instance segmentation, panoptic segmentation, medical image segmentation.
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1 INTRODUCTION

IMAGE segmentation has been a fundamental problem in
computer vision since the early days of the field [1] (Chap-

ter 8). An essential component of many visual understanding
systems, it involves partitioning images (or video frames)
into multiple segments and objects [2] (Chapter 5) and plays
a central role in a broad range of applications [3] (Part VI),
including medical image analysis (e.g., tumor boundary
extraction and measurement of tissue volumes), autonomous
vehicles (e.g., navigable surface and pedestrian detection),
video surveillance, and augmented reality to name a few.

Image segmentation can be formulated as the problem
of classifying pixels with semantic labels (semantic seg-
mentation), or partitioning of individual objects (instance
segmentation), or both (panoptic segmentation). Semantic
segmentation performs pixel-level labeling with a set of
object categories (e.g., human, car, tree, sky) for all image
pixels; thus, it is generally a more demanding undertaking
than whole-image classification, which predicts a single label
for the entire image. Instance segmentation extends the scope
of semantic segmentation by detecting and delineating each
object of interest in the image (e.g., individual people).

Numerous image segmentation algorithms have been
developed in the literature, from the earliest methods,
such as thresholding [4], histogram-based bundling, region-
growing [5], k-means clustering [6], watershed methods [7],
to more advanced algorithms such as active contours [8],
graph cuts [9], conditional and Markov random fields [10],
and sparsity-based [11], [12] methods. In recent years,
however, deep learning (DL) models have yielded a new
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Fig. 1. Segmentation results of DeepLabV3 [13] on sample images.

generation of image segmentation models with remarkable
performance improvements, often achieving the highest
accuracy rates on popular benchmarks (e.g., Fig. 1). This
has caused a paradigm shift in the field.

This survey, a revised version of [14], covers the recent
literature in deep-learning-based image segmentation, includ-
ing more than 100 such segmentation methods proposed to
date. It provides a comprehensive review with insights into
different aspects of these methods, including the training
data, the choice of network architectures, loss functions,
training strategies, and their key contributions. The target
literature is organized into the following categories:

1) Fully convolutional networks
2) Convolutional models with graphical models
3) Encoder-decoder based models
4) Multiscale and pyramid network based models
5) R-CNN based models (for instance segmentation)
6) Dilated convolutional models and DeepLab family
7) Recurrent neural network based models
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Fig. 2. Architecture of CNNs. From [15].

8) Attention-based models
9) Generative models and adversarial training

10) Convolutional models with active contour models
11) Other models

Within this taxonomy,

• we provide a comprehensive review and analysis of
deep-learning-based image segmentation algorithms;

• we overview popular image segmentation datasets,
grouped into 2D and 2.5D (RGB-D) images;

• we summarize the performances of the reviewed
segmentation methods on popular benchmarks;

• we discuss several challenges and future research di-
rections for deep-learning-based image segmentation.

The remainder of this survey is organized as follows:
Section 2 overviews popular Deep Neural Network (DNN)
architectures that serve as the backbones of many modern
segmentation algorithms. Section 3 reviews the most sig-
nificant state-of-the-art deep learning based segmentation
models. Section 4 overviews some of the most popular image
segmentation datasets and their characteristics. Section 5
lists popular metrics for evaluating deep-learning-based
segmentation models and tabulates model performances.
Section 6 discusses the main challenges and opportunities
of deep learning-based segmentation methods. Section 7
presents our conclusions.

2 DEEP NEURAL NETWORK ARCHITECTURES

This section provides an overview of prominent DNN
architectures used by the computer vision community, in-
cluding convolutional neural networks, recurrent neural
networks and long short-term memory, encoder-decoder and
autoencoder models, and generative adversarial networks.
Due to space limitations, several other DNN architectures
that have been proposed, among them transformers, capsule
networks, gated recurrent units, and spatial transformer
networks, will not be covered.

2.1 Convolutional Neural Networks (CNNs)
CNNs are among the most successful and widely used
architectures in the deep learning community, especially
for computer vision tasks. CNNs were initially proposed by
Fukushima [16] in his seminal paper on the “Neocognitron”,
which was based on Hubel and Wiesel’s hierarchical recep-
tive field model of the visual cortex. Subsequently, Waibel
et al. [17] introduced CNNs with weights shared among
temporal receptive fields and backpropagation training for
phoneme recognition, and LeCun et al. [15] developed a
practical CNN architecture for document recognition (Fig. 2).

Fig. 3. Architecture of a simple RNN. Courtesy of Christopher Olah [21].

CNNs usually include three types of layers: i) convolutional
layers, where a kernel (or filter) of weights is convolved to
extract features; ii) nonlinear layers, which apply (usually
element-wise) an activation function to feature maps, thus
enabling the network to model nonlinear functions; and iii)
pooling layers, which reduce spatial resolution by replacing
small neighborhoods in a feature map with some statistical in-
formation about those neighborhoods (mean, max, etc.). The
neuronal units in layers are locally connected; that is, each
unit receives weighted inputs from a small neighborhood,
known as the receptive field, of units in the previous layer. By
stacking layers to form multiresolution pyramids, the higher-
level layers learn features from increasingly wider receptive
fields. The main computational advantage of CNNs is that
all the receptive fields in a layer share weights, resulting
in a significantly smaller number of parameters than fully-
connected neural networks. Some of the most well known
CNN architectures include AlexNet [18], VGGNet [19], and
ResNet [20].

2.2 Recurrent Neural Networks (RNNs) and the LSTM
RNNs [22] are commonly used to process sequential data,
such as speech, text, videos, and time-series. Referring to
Fig. 3, at each time step t the model collects the input
xt and the hidden state ht−1 from the previous step, and
outputs a target value ot and the next hidden state ht+1.
RNNs are typically problematic for long sequences as they
cannot capture long-term dependencies in many real-world
applications and often suffer from gradient vanishing or
exploding problems. However, a type of RNN known as the
Long Short-Term Memory (LSTM) [23] is designed to avoid
these issues. The LSTM architecture (Fig. 4) includes three
gates (input gate, output gate, and forget gate) that regulate
the flow of information into and out of a memory cell that
stores values over arbitrary time intervals.

Fig. 4. Architecture of a standard LSTM module. Courtesy of Olah [21].

2.3 Encoder-Decoder and Auto-Encoder Models
Encoder-decoders [24], [25] are a family of models that learn
to map data-points from an input domain to an output
domain via a two-stage network (Fig. 5): The encoder,
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Fig. 5. Architecture of a simple encoder-decoder model.

performing an encoding function z = g(x), compresses the
input x into a latent-space representation z, while the decoder
y = f(z) predicts the output y from z. The latent, or feature
(vector), representation captures the semantic information
of the input useful in predicting the output. Such models
are popular for sequence-to-sequence modeling in Natural
Language Processing (NLP) applications as well as in image-
to-image translation, where the output could be an enhanced
version of the image (such as in image de-blurring, or super-
resolution) or a segmentation map. Auto-encoders are a
special case of encoder-decoder models in which the input
and output are the same.

2.4 Generative Adversarial Networks (GANs)

GANs [26] are a newer family of deep learning models.
They consist of two networks—a generator and a discrim-
inator (Fig. 6). In the conventional GAN, the generator
network G learns a mapping from noise z (with a prior
distribution) to a target distribution y, which is similar to
the “real” samples. The discriminator network D attempts
to distinguish the generated “fake” samples from the real
ones. The GAN may be characterized as a minimax game
between G and D, where D tries to minimize its classification
error in distinguishing fake samples from real ones, hence
maximizing a loss function, and G tries to maximize the
discriminator network’s error, hence minimizing the loss
function. GAN variants include Convolutional-GANs [27],
conditional-GANs [28], and Wasserstein-GANs [29].
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Fig. 6. Architecture of a GAN. Courtesy of Ian Goodfellow.

3 DL-BASED IMAGE SEGMENTATION MODELS

This section is a survey of numerous learning-based seg-
mentation methods, grouped into 10 categories based on
their model architectures. Several architectural features are
common among many of these methods, such as encoders
and decoders, skip-connections, multiscale architectures, and
more recently the use of dilated convolutions. It is convenient
to group models based on their architectural contributions
over prior models.

3.1 Fully Convolutional Models

Long et al. [30] proposed Fully Convolutional Networks
(FCNs), a milestone in DL-based semantic image segmenta-
tion models. An FCN (Fig. 7) includes only convolutional
layers, which enables it to output a segmentation map whose
size is the same as that of the input image. To handle
arbitrarily-sized images, the authors modified existing CNN
architectures, such as VGG16 and GoogLeNet, by removing
all fully-connected layers such that the model outputs a
spatial segmentation map instead of classification scores.

Fig. 7. The FCN learns to make pixel-accurate predictions. From [30].

Through the use of skip connections (Fig. 8) in which
feature maps from the final layers of the model are up-
sampled and fused with feature maps of earlier layers, the
model combines semantic information (from deep, coarse
layers) and appearance information (from shallow, fine lay-
ers) in order to produce accurate and detailed segmentations.
Tested on PASCAL VOC, NYUDv2, and SIFT Flow, the model
achieved state-of-the-art segmentation performance.

Fig. 8. Skip connections combine coarse and fine information. From [30].

FCNs have been applied to a variety of segmentation
problems, such as brain tumor segmentation [31], instance-
aware semantic segmentation [32], skin lesion segmenta-
tion [33], and iris segmentation [34]. While demonstrating
that DNNs can be trained to perform semantic segmentation
in an end-to-end manner on variable-sized images, the
conventional FCN model has some limitations—it is too
computationally expensive for real-time inference, it does
not account for global context information in an efficient
manner, and it is not easily generalizable to 3D images.
Several researchers have attempted to overcome some of the
limitations of the FCN. For example, Liu et al. [35] proposed
ParseNet (Fig. 9), which adds global context to FCNs by using
the average feature for a layer to augment the features at
each location. The feature map for a layer is pooled over the
whole image, resulting in a context vector. The context vector
is normalized and unpooled to produce new feature maps of
the same size as the initial ones, which are then concatenated,
which amounts to an FCN whose convolutional layers are
replaced by the described module (Fig. 9e).
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Fig. 9. The ParseNet (e) uses extra global context to produce a segmen-
tation (d) smoother than that of an FCN (c). From [35].

3.2 CNNs With Graphical Models

As discussed, the FCN ignores potentially useful scene-level
semantic context. To exploit more context, several approaches
incorporate into DL architectures probabilistic graphical
models, such as Conditional Random Fields (CRFs) and
Markov Random Fields (MRFs).

Due to the invariance properties that make CNNs good
for high level tasks such as classification, responses from
the later layers of deep CNNs are not sufficiently well
localized for accurate object segmentation. To address this
drawback, Chen et al. [36] proposed a semantic segmentation
algorithm that combines CNNs and fully-connected CRFs
(Fig. 10). They showed that their model can localize segment
boundaries with higher accuracy than was possible with
previous methods.

Fig. 10. A CNN+CRF model. From [36].

Schwing and Urtasun [37] proposed a fully-connected
deep structured network for image segmentation. They
jointly trained CNNs and fully-connected CRFs for semantic
image segmentation, and achieved encouraging results on
the challenging PASCAL VOC 2012 dataset. Zheng et al. [38]
proposed a similar semantic segmentation approach. In
related work, Lin et al. [39] proposed an efficient semantic
segmentation model based on contextual deep CRFs. They
explored “patch-patch” context (between image regions) and
“patch-background” context to improve semantic segmenta-
tion through the use of contextual information.

Liu et al. [40] proposed a semantic segmentation algorithm
that incorporates rich information into MRFs, including high-
order relations and mixture of label contexts. Unlike previous
efforts that optimized MRFs using iterative algorithms, they
proposed a CNN model, namely a Parsing Network, which
enables deterministic end-to-end computation in one pass.

3.3 Encoder-Decoder Based Models

Most of the popular DL-based segmentation models use
some kind of encoder-decoder architecture. We group these
models into two categories: those for general image segmen-
tation, and those for medical image segmentation.

3.3.1 General Image Segmentation
Noh et al. [41] introduced semantic segmentation based on
deconvolution (a.k.a. transposed convolution). Their model,
DeConvNet (Fig. 11), consists of two parts, an encoder using
convolutional layers adopted from the VGG 16-layer net-
work and a multilayer deconvolutional network that inputs
the feature vector and generates a map of pixel-accurate
class probabilities. The latter comprises deconvolution and
unpooling layers, which identify pixel-wise class labels and
predict segmentation masks.

Fig. 11. Deconvolutional semantic segmentation. From [41].

Badrinarayanan et al. [25] proposed SegNet, a fully
convolutional encoder-decoder architecture for image seg-
mentation (Fig. 12). Similar to the deconvolution network,
the core trainable segmentation engine of SegNet consists
of an encoder network, which is topologically identical to
the 13 convolutional layers of the VGG16 network, and a
corresponding decoder network followed by a pixel-wise
classification layer. The main novelty of SegNet is in the way
the decoder upsamples its lower-resolution input feature
map(s); specifically, using pooling indices computed in the
max-pooling step of the corresponding encoder to perform
nonlinear up-sampling.

Fig. 12. The SegNet model. From [25].

A limitation of encoder-decoder based models is the
loss of fine-grained image information, due to the loss
of resolution through the encoding process. HRNet [42]
(Fig. 13) addresses this shortcoming. Other than recovering
high-resolution representations as is done in DeConvNet,
SegNet, and other models, HRNet maintains high-resolution
representations through the encoding process by connecting
the high-to-low resolution convolution streams in parallel
and repeatedly exchanging the information across resolu-
tions. There are four stages: the 1st stage consists of high-
resolution convolutions, while the 2nd/3rd/4th stage repeats
2-resolution/3-resolution/4-resolution blocks. Several recent
semantic segmentation models use HRNet as a backbone.

Several other works adopt transposed convolutions, or
encoder-decoders for image segmentation, such as Stacked
Deconvolutional Network (SDN) [43], Linknet [44], W-
Net [45], and locality-sensitive deconvolution networks for
RGB-D segmentation [46].

3.3.2 Medical and Biomedical Image Segmentation
Several models inspired by FCNs and encoder-decoder
networks were initially developed for medical/biomedical
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Fig. 13. The HRNet architecture. From [42].

image segmentation, but are now also being used outside
the medical domain.

Ronneberger et al. [47] proposed the U-Net (Fig. 14) for
efficiently segmenting biological microscopy images. The
U-Net architecture comprises two parts, a contracting path
to capture context, and a symmetric expanding path that
enables precise localization. The U-Net training strategy
relies on the use of data augmentation to learn effectively
from very few annotated images. It was trained on 30
transmitted light microscopy images, and it won the ISBI cell
tracking challenge 2015 by a large margin.

Fig. 14. The U-Net model. From [47].

Various extensions of U-Net have been developed for
different kinds of images and problem domains; for example,
Zhou et al. [48] developed a nested U-Net architecture, Zhang
et al. [49] developed a road segmentation algorithm based on
U-Net, and Cicek et al. [50] proposed a U-Net architecture
for 3D images.

V-Net (Fig. 15), proposed by Milletari et al. [51] for 3D
medical image segmentation, is another well known FCN-
based model. The authors introduced a new loss function
based on the Dice coefficient, enabling the model to deal
with situations in which there is a strong imbalance between
the number of voxels in the foreground and background.
The network was trained end-to-end on MRI images of
the prostate and learns to predict segmentation for the
whole volume at once. Some of the other relevant works
on medical image segmentation includes Progressive Dense
V-Net et al. for automatic segmentation of pulmonary lobes
from chest CT images, and the 3D-CNN encoder for lesion
segmentation [52].

3.4 Multiscale and Pyramid Network Based Models
Multiscale analysis, a well established idea in image pro-
cessing, has been deployed in various neural network
architectures. One of the most prominent models of this

Fig. 15. The V-Net model for 3D image segmentation. From [51].

sort is the Feature Pyramid Network (FPN) proposed by
Lin et al. [53], which was developed for object detection but
was also applied to segmentation. The inherent multiscale,
pyramidal hierarchy of deep CNNs was used to construct
feature pyramids with marginal extra cost. To merge low and
high resolution features, the FPN is composed of a bottom-up
pathway, a top-down pathway and lateral connections. The
concatenated feature maps are then processed by a 3 × 3
convolution to produce the output of each stage. Finally,
each stage of the top-down pathway generates a prediction
to detect an object. For image segmentation, the authors use
two multilayer perceptrons (MLPs) to generate the masks.

Zhao et al. [54] developed the Pyramid Scene Parsing
Network (PSPN), a multiscale network to better learn the
global context representation of a scene (Fig. 16). Multiple
patterns are extracted from the input image using a residual
network (ResNet) as a feature extractor, with a dilated net-
work. These feature maps are then fed into a pyramid pooling
module to distinguish patterns of different scales. They are
pooled at four different scales, each one corresponding to a
pyramid level, and processed by a 1×1 convolutional layer to
reduce their dimensions. The outputs of the pyramid levels
are up-sampled and concatenated with the initial feature
maps to capture both local and global context information.
Finally, a convolutional layer is used to generate the pixel-
wise predictions.

Fig. 16. The PSPN architecture. From [54].

Ghiasi and Fowlkes [55] developed a multiresolution
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reconstruction architecture based on a Laplacian pyramid
that uses skip connections from higher resolution feature
maps and multiplicative gating to successively refine seg-
ment boundaries reconstructed from lower-resolution maps.
They showed that while the apparent spatial resolution of
convolutional feature maps is low, the high-dimensional fea-
ture representation contains significant sub-pixel localization
information.

Other models use multiscale analysis for segmentation,
among them Dynamic Multiscale Filters Network (DM-
Net) [56], Context Contrasted Network and gated multiscale
aggregation (CCN) [57], Adaptive Pyramid Context Network
(APC-Net) [58], MultiScale Context Intertwining (MSCI) [59],
and salient object segmentation [60].

3.5 R-CNN Based Models
The Regional CNN (R-CNN) and its extensions have proven
successful in object detection applications. In particular, the
Faster R-CNN [61] architecture (Fig. 17) uses a region pro-
posal network (RPN) that proposes bounding box candidates.
The RPN extracts a Region of Interest (RoI), and an RoIPool
layer computes features from these proposals to infer the
bounding box coordinates and class of the object. Some
extensions of R-CNN have been used to address the instance
segmentation problem; i.e., the task of simultaneously per-
forming object detection and semantic segmentation.

Fig. 17. Faster R-CNN architecture. Each image is processed by convo-
lutional layers and its features are extracted, a sliding window is used in
RPN for each location over the feature map, for each location, k (k = 9)
anchor boxes are used (3 scales of 128, 256 and 512, and 3 aspect
ratios of 1:1, 1:2, 2:1) to generate a region proposal; A cls layer outputs
2k scores whether there or not there is an object for k boxes; A reg layer
outputs 4k for the coordinates (box center coordinates, width and height)
of k boxes. From [61].

He et al. [62] proposed Mask R-CNN (Fig. 18), which
outperformed previous benchmarks on many COCO object
instance segmentation challenges (Fig. 19), efficiently detect-
ing objects in an image while simultaneously generating a
high-quality segmentation mask for each instance. Essentially,
it is a Faster R-CNN with 3 output branches—the first com-
putes the bounding box coordinates, the second computes
the associated classes, and the third computes the binary
mask to segment the object. The Mask R-CNN loss function
combines the losses of the bounding box coordinates, the
predicted class, and the segmentation mask, and trains all of
them jointly.

The Path Aggregation Network (PANet) proposed by Liu
et al. [63] is based on the Mask R-CNN and FPN models
(Fig. 20). The feature extractor of the network uses an
FPN backbone with a new augmented bottom-up pathway

Fig. 18. Mask R-CNN architecture. From [62].

Fig. 19. Mask R-CNN instance segmentation results. From [62].

improving the propagation of lower-layer features. Each
stage of this third pathway takes as input the feature maps
of the previous stage and processes them with a 3 × 3
convolutional layer. A lateral connection adds the output
to the same-stage feature maps of the top-down pathway
and these feed the next stage.

Fig. 20. The Path Aggregation Network. (a) FPN backbone. (b) Bottom-
up path augmentation. (c) Adaptive feature pooling. (d) Box branch. (e)
Fully-connected fusion. From [63].

Dai et al. [64] developed a multitask network for instance-
aware semantic segmentation that consists of three networks
for differentiating instances, estimating masks, and catego-
rizing objects. These networks form a cascaded structure
and are designed to share their convolutional features. Hu
et al. [65] proposed a new partially-supervised training
paradigm together with a novel weight transfer function,
which enables training instance segmentation models on a
large set of categories, all of which have box annotations, but
only a small fraction of which have mask annotations.

Chen et al. [66] developed an instance segmentation
model, MaskLab, by refining object detection with semantic
and direction features based on Faster R-CNN. This model
produces three outputs (Fig. 21), box detection, semantic
segmentation logits for pixel-wise classification, and direction
prediction logits for predicting each pixel’s direction toward
its instance center. Building on the Faster R-CNN object
detector, the predicted boxes provide accurate localization of
object instances. Within each region of interest, MaskLab per-
forms foreground/background segmentation by combining
semantic and direction prediction.

Tensormask, proposed by Chen et al. [67], is based on
dense sliding window instance segmentation. The authors
treat dense instance segmentation as a prediction task over
4D tensors and present a general framework that enables
novel operators on 4D tensors. They demonstrate that the
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Fig. 21. The MaskLab model. From [66].

tensor approach yields large gains over baselines, with results
comparable to Mask R-CNN.

Other instance segmentation models have been devel-
oped based on R-CNN, such as those developed for mask
proposals, including R-FCN [68], DeepMask [69], Polar-
Mask [70], boundary-aware instance segmentation [71], and
CenterMask [72]. Another promising approach is to tackle
the instance segmentation problem by learning grouping
cues for bottom-up segmentation, such as deep watershed
transform [73], real-time instance segmentation [74], and
semantic instance segmentation via deep metric learning [75].

3.6 Dilated Convolutional Models
Dilated (a.k.a. “atrous”) convolution introduces to convo-
lutional layers another parameter, the dilation rate. For
example, a 3 × 3 kernel (Fig. 22) with a dilation rate of
2 will have the same size receptive field as a 5 × 5 kernel
while using only 9 parameters, thus enlarging the receptive
field with no increase in computational cost.

Fig. 22. Dilated convolution. A 3× 3 kernel at different dilation rates.

Dilated convolutions have been popular in the field of
real-time segmentation, and many recent publications report
the use of this technique. Some of the most important include
the DeepLab family [76], multiscale context aggregation
[77], Dense Upsampling Convolution and Hybrid Dilated
Convolution (DUC-HDC) [78], densely connected Atrous
Spatial Pyramid Pooling (DenseASPP) [79], and the Efficient
Network (ENet) [80].

DeepLabv1 [36] and DeepLabv2 [76], developed by Chen
et al., are among the most popular image segmentation
models. The latter has three key features (Fig. 23). First is
the use of dilated convolution to address the decreasing
resolution in the network caused by max-pooling and
striding. Second is Atrous Spatial Pyramid Pooling (ASPP),
which probes an incoming convolutional feature layer with
filters at multiple sampling rates, thus capturing objects as
well as multiscale image context to robustly segment objects
at multiple scales. Third is improved localization of object
boundaries by combining methods from deep CNNs, such as
fully convolutional VGG-16 or ResNet 101, and probabilistic
graphical models, specifically fully-connected CRFs.

Fig. 23. The DeepLab model. From [76].

Subsequently, Chen et al. [13] proposed DeepLabv3,
which combines cascaded and parallel modules of dilated
convolutions. The parallel convolution modules are grouped
in the ASPP. A 1 × 1 convolution and batch normalization
are added in the ASPP. All the outputs are concatenated
and processed by another 1 × 1 convolution to create
the final output with logits for each pixel. Next, Chen et
al. [81] released Deeplabv3+ (Fig. 24), which uses an encoder-
decoder architecture including dilated separable convolution
composed of a depthwise convolution (spatial convolution
for each channel of the input) and pointwise convolution
(1× 1 convolution with the depthwise convolution as input).
They used the DeepLabv3 framework as the encoder. The
most relevant model has a modified Xception backbone
with more layers, dilated depthwise separable convolutions
instead of max pooling and batch normalization.

Fig. 24. The DeepLab-v3+ model. From [81].

3.7 RNN Based Models

While CNNs are a natural fit for computer vision prob-
lems, they are not the only possibility. RNNs are useful in
modeling the short/long term dependencies among pixels to
(potentially) improve the estimation of the segmentation map.
Using RNNs, pixels may be linked together and processed
sequentially to model global contexts and improve semantic
segmentation. However the natural 2D structure of images
poses a challenge.

Fig. 25. The ReSeg model (without the pre-trained VGG-16 feature
extractor). From [82].
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Visin et al. [82] proposed an RNN-based model for
semantic segmentation called ReSeg (Fig. 25). This model
is mainly based on ReNet [83], which was developed for
image classification. Each ReNet layer is composed of four
RNNs that sweep the image horizontally and vertically in
both directions, encoding patches/activations, and providing
relevant global information. To perform image segmentation
with the ReSeg model, ReNet layers are stacked atop pre-
trained VGG-16 convolutional layers, which extract generic
local features, and are then followed by up-sampling layers to
recover the original image resolution in the final predictions.

Byeon et al. [84] performed per-pixel segmentation and
classification of images of natural scenes using 2D LSTM
networks, which learn textures and the complex spatial
dependencies of labels in a single model that carries out
classification, segmentation, and context integration.

Fig. 26. The graph-LSTM model for semantic segmentation. From [85].

Liang et al. [85] proposed a semantic segmentation model
based on a graph-LSTM network (Fig. 26) in which convo-
lutional layers are augmented by graph-LSTM layers built
on super-pixel maps, which provide a more global structural
context. These layers generalize the LSTM for uniform,
array-structured data (i.e., row, grid, or diagonal LSTMs) to
nonuniform, graph-structured data, where arbitrary-shaped
superpixels are semantically consistent nodes and the ad-
jacency relations between superpixels correspond to edges,
thus forming an undirected graph (Fig. 27).

Fig. 27. Comparison of conventional RNN models and the graph-LSTM.
From [85].

Xiang and Fox [86] proposed Data Associated Recurrent
Neural Networks (DA-RNNs) for joint 3D scene mapping
and semantic labeling. DA-RNNs use a new recurrent neural
network architecture for semantic labeling on RGB-D videos.
The output of the network is integrated with mapping
techniques such as Kinect-Fusion in order to inject semantic
information into the reconstructed 3D scene.

Hu et al. [87] developed a semantic segmentation al-
gorithm that combines a CNN to encode the image and
an LSTM to encode its linguistic description. To produce
pixel-wise image segmentations from language inputs, they

propose an end-to-end trainable recurrent and convolutional
model that jointly learns to process visual and linguistic
information (Fig. 28). This differs from traditional semantic
segmentation over a predefined set of semantic classes; i.e.,
the phrase “two men sitting on the right bench” requires
segmenting only the two people on the right bench and no
others sitting on another bench or standing. Fig. 29 shows
an example segmentation result by the model.

Fig. 28. The CNN+LSTM architecture for semantic segmentation from
natural language expressions. From [87].

Fig. 29. CNN+LSTM segmentation masks generated for the query
“people in blue coat”. From [87].

A drawback of RNN-based models is that they will
generally be slower than their CNN counterparts as their
sequential nature is not amenable to parallelization.

3.8 Attention-Based Models
Attention mechanisms have been persistently explored in
computer vision over the years, and it is not surprising to
find publications that apply them to semantic segmentation.

Fig. 30. Attention-based semantic segmentation model. From [88].

Chen et al. [88] proposed an attention mechanism that
learns to softly weight multiscale features at each pixel
location. They adapt a powerful semantic segmentation
model and jointly train it with multiscale images and the
attention model In Fig. 30, the model assigns large weights
to the person (green dashed circle) in the background for
features from scale 1.0 as well as on the large child (magenta
dashed circle) for features from scale 0.5. The attention
mechanism enables the model to assess the importance of
features at different positions and scales, and it outperforms
average and max pooling.
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Fig. 31. The RAN architecture. From [89].

Unlike approaches in which convolutional classifiers
are trained to learn the representative semantic features
of labeled objects, Huang et al. [89] proposed a Reverse
Attention Network (RAN) architecture (Fig. 31) for semantic
segmentation that also applies reverse attention mechanisms,
thereby training the model to capture the opposite concept—
features that are not associated with a target class. The RAN
network performs the direct and reverse-attention learning
processes simultaneously.

Li et al. [90] developed a Pyramid Attention Network
for semantic segmentation, which exploits global contextual
information for semantic segmentation. Eschewing com-
plicated dilated convolutions and decoder networks, they
combined attention mechanisms and spatial pyramids to
extract precise dense features for pixel labeling. Fu et al. [91]
proposed a dual attention network for scene segmentation
that can capture rich contextual dependencies based on the
self-attention mechanism. Specifically, they append two types
of attention modules on top of a dilated FCN that models the
semantic inter-dependencies in spatial and channel dimen-
sions, respectively. The position attention module selectively
aggregates the features at each position via weighted sums.

Other applications of attention mechanisms to semantic
segmentation include OCNet [92], which employs an ob-
ject context pooling inspired by self-attention mechanism,
ResNeSt: Split-Attention Networks [93], Height-driven At-
tention Networks [94], Expectation-Maximization Attention
(EMANet) [95], Criss-Cross Attention Network (CCNet) [96],
end-to-end instance segmentation with recurrent atten-
tion [97], a point-wise spatial attention network for scene
parsing [98], and Discriminative Feature Network (DFN) [99].

3.9 Generative Models and Adversarial Training

GANs have been applied to a wide range of tasks in
computer vision, not excluding image segmentation.

Fig. 32. The GAN for semantic segmentation. From [100].

Luc et al. [100] proposed an adversarial training approach
for semantic segmentation in which they trained a convolu-
tional semantic segmentation network (Fig. 32), along with an
adversarial network that discriminates between ground-truth

segmentation maps and those generated by the segmentation
network. They showed that the adversarial training approach
yields improved accuracy on the Stanford Background and
PASCAL VOC 2012 datasets.

Souly et al. [101] proposed semi-weakly supervised
semantic segmentation using GANs. Their model consists
of a generator network providing extra training examples
to a multiclass classifier, acting as discriminator in the GAN
framework, that assigns sample a label from the possible
label classes or marks it as a fake sample (extra class).

Hung et al. [102] developed a framework for semi-
supervised semantic segmentation using an adversarial
network. They designed an FCN discriminator to differ-
entiate the predicted probability maps from the ground truth
segmentation distribution, considering the spatial resolution.
The loss function of this model has three terms: cross-entropy
loss on the segmentation ground truth, adversarial loss of
the discriminator network, and semi-supervised loss based
on the confidence map output of the discriminator.

Xue et al. [103] proposed an adversarial network with
multiscale L1 Loss for medical image segmentation. They
used an FCN as the segmentor to generate segmentation label
maps, and proposed a novel adversarial critic network with a
multi-scale L1 loss function to force the critic and segmentor
to learn both global and local features that capture long and
short range spatial relationships between pixels.

Other approaches based on adversarial training include
cell image segmentation using GANs [104], and segmentation
and generation of the invisible parts of objects [105].

3.10 CNN Models With Active Contour Models

The exploration of synergies between FCNs and Active
Contour Models (ACMs) [8] has recently attracted research
interest.

One approach is to formulate new loss functions that are
inspired by ACM principles. For example, inspired by the
global energy formulation of [106], Chen et al. [107] proposed
a supervised loss layer that incorporated area and size infor-
mation of the predicted masks during training of an FCN
and tackled the problem of ventricle segmentation in cardiac
MRI. Similarly, Gur et al. [108] presented an unsupervised
loss function based on morphological active contours without
edges [109] for microvascular image segmentation.

A different approach initially sought to utilize the ACM
merely as a post-processor of the output of an FCN and
several efforts attempted modest co-learning by pre-training
the FCN. One example of an ACM post-processor for
the task of semantic segmentation of natural images is
the work by Le et al. [110] in which level-set ACMs are
implemented as RNNs. Deep Active Contours by Rupprecht
et al. [111], is another example. For medical image seg-
mentation, Hatamizadeh et al. [112] proposed an integrated
Deep Active Lesion Segmentation (DALS) model that trains
the FCN backbone to predict the parameter functions of a
novel, locally-parameterized level-set energy functional. In
another relevant effort, Marcos et al. [113] proposed Deep
Structured Active Contours (DSAC), which combines ACMs
and pre-trained FCNs in a structured prediction framework
for building instance segmentation (albeit with manual
initialization) in aerial images. For the same application,
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Cheng et al. [114] proposed the Deep Active Ray Network
(DarNet), which is similar to DSAC, but with a different
explicit ACM formulation based on polar coordinates to
prevent contour self-intersection.

A truly end-to-end backpropagation trainable, fully-
integrated FCN-ACM combination was recently introduced
by Hatamizadeh et al. [115], dubbed Trainable Deep Active
Contours (TDAC). Going beyond [112], they implemented
the locally-parameterized level-set ACM in the form of
additional convolutional layers following the layers of the
backbone FCN, exploiting Tensorflow’s automatic differen-
tiation mechanism to backpropagate training error gradi-
ents throughout the entire DCAC framework. The fully-
automated model requires no intervention either during
training or segmentation, can naturally segment multiple
instances of objects of interest, and deal with arbitrary object
shape including sharp corners.

3.11 Other Models

Other popular DL architectures for image segmentation
include the following:

Context Encoding Network (EncNet) [116] uses a basic
feature extractor and feeds the feature maps into a context
encoding module. RefineNet [117] is a multipath refinement
network that explicitly exploits all the information available
along the down-sampling process to enable high-resolution
prediction using long-range residual connections. Seed-
net [118] introduced an automatic seed generation technique
with deep reinforcement learning that learns to solve the in-
teractive segmentation problem. Object-Contextual Represen-
tations (OCR) [42] learns object regions and the relation be-
tween each pixel and each object region, augmenting the rep-
resentation pixels with the object-contextual representation.
Additional models and methods include BoxSup [119], Graph
Convolutional Networks (GCN) [120], Wide ResNet [121],
Exfuse [122] (enhancing low-level and high-level features
fusion), Feedforward-Net [123], saliency-aware models for
geodesic video segmentation [124], Dual Image Segmentation
(DIS) [125], FoveaNet [126] (perspective-aware scene pars-
ing), Ladder DenseNet [127], Bilateral Segmentation Network
(BiSeNet) [128], Semantic Prediction Guidance for Scene
Parsing (SPGNet) [129], gated shape CNNs [130], Adaptive
Context Network (AC-Net) [131], Dynamic-Structured Se-
mantic Propagation Network (DSSPN) [132], Symbolic Graph
Reasoning (SGR) [133], CascadeNet [134], Scale-Adaptive
Convolutions (SAC) [135], Unified Perceptual parsing Net-
work (UperNet) [136], segmentation by re-training and
self-training [137], densely connected neural architecture
search [138], hierarchical multiscale attention [139], Efficient
RGB-D Semantic Segmentation (ESA-Net) [140], Iterative
Pyramid Contexts [141], and Learning Dynamic Routing for
Semantic Segmentation [142].

Panoptic segmentation [143] is growing in popularity.
Efforts in this direction include Panoptic Feature Pyramid
Network (PFPN) [144], attention-guided network for panop-
tic segmentation [145], seamless scene segmentation [146],
panoptic Deeplab [147], unified panoptic segmentation net-
work [148], and efficient panoptic segmentation [149].

Fig. 33 provides a timeline of some of the most represen-
tative DL image segmentation models since 2014.

4 DATASETS

In this section we survey the image datasets most commonly
used to train and test DL image segmentation models,
grouping them into 3 categories—2D (pixel) images, 2.5D
RGB-D (color+depth) images, and 3D (voxel) images—and
provide details about the characteristics of each dataset.

Data augmentation is often used to increase the number
of labeled samples, especially for small datasets such as
those in the medical imaging domain, thus improving the
performance of DL segmentation models. A set of trans-
formations is applied either in the data space, or feature
space, or both (i.e., both the image and the segmentation
map). Typical transformations include translation, reflection,
rotation, warping, scaling, color space shifting, cropping, and
projections onto principal components. Data augmentation
can also benefit by yielding faster convergence, decreasing
the chance of over-fitting, and enhancing generalization. For
some small datasets, data augmentation has been shown to
boost model performance by more than 20%.

4.1 2D Image Datasets

The bulk of image segmentation research has focused on 2D
images; therefore, many 2D image segmentation datasets are
available. The following are some of the most popular:

PASCAL Visual Object Classes (VOC) [150] is a highly
popular dataset in computer vision, with annotated images
available for 5 tasks—classification, segmentation, detection,
action recognition, and person layout. For the segmentation
task, there are 21 labeled object classes and pixels are labeled
as background if they do not belong to any of these classes.
The dataset is divided into two sets, training and validation,
with 1,464 and 1,449 images, respectively, and a private test
set for the actual challenge. Fig. 34 shows an example image
and its pixel-wise label.

PASCAL Context [152] is an extension of the PASCAL
VOC 2010 detection challenge. It includes pixel-wise labels
for all the training images. It contains more than 400 classes
(including the original 20 classes plus backgrounds from
PASCAL VOC segmentation), in three categories (objects,
stuff, and hybrids). Many of the object categories of this
dataset are too sparse and; therefore, a subset of 59 classes is
usually selected for use.

Microsoft Common Objects in Context (MS
COCO) [153] is a large-scale object detection, segmentation,
and captioning dataset. COCO includes images of complex
everyday scenes, containing common objects in their natural
contexts. This dataset contains photos of 91 object types,
with a total of 2.5 million labeled instances in 328K images.
Fig. 35 compares MS-COCO labels with those of previous
datasets for a sample image.

Cityscapes [154] is a large database with a focus on
semantic understanding of urban street scenes. It contains
a diverse set of stereo video sequences recorded in street
scenes from 50 cities, with high quality pixel-level annotation
of 5K frames, in addition to a set of 20K weakly annotated
frames. It includes semantic and dense pixel annotations of
30 classes, grouped into 8 categories—flat surfaces, humans,
vehicles, constructions, objects, nature, sky, and void. Fig. 36
shows sample segmentation maps from this dataset.
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Fig. 33. Timeline of representative DL-based image segmentation algorithms. Orange, green, and yellow blocks indicate semantic, instance, and
panoptic segmentation algorithms, respectively.

Fig. 34. An example image from the PASCAL VOC dataset. From [151].

Fig. 35. A sample image and segmentation map in COCO. From [153].

ADE20K / MIT Scene Parsing (SceneParse150) offers a
training and evaluation platform for scene parsing algo-
rithms. The data for this benchmark comes from the ADE20K
dataset [134], which contains more than 20K scene-centric
images exhaustively annotated with objects and object parts.
The benchmark is divided into 20K images for training, 2K
images for validation, and another batch of images for testing.
There are 150 semantic categories in this dataset.

SiftFlow [155] includes 2,688 annotated images, from
a subset of the LabelMe database, of 8 different outdoor
scenes, among them streets, mountains, fields, beaches, and
buildings, and in one of 33 semantic classes.

Stanford Background [156] comprises outdoor images
of scenes from existing datasets, such as LabelMe, MSRC,
and PASCAL VOC. It includes 715 images with at least one
foreground object. The dataset is pixel-wise annotated, and

Fig. 36. Segmentation maps from the Cityscapes dataset. From [154].

can be used for semantic scene understanding.

Berkeley Segmentation Dataset (BSD) [157] contains
12,000 hand-labeled segmentations of 1,000 Corel dataset
images from 30 human subjects. It aims to provide an
empirical basis for research on image segmentation and
boundary detection. Half of the segmentations were obtained
from presenting the subject a color image and the other half
from presenting a grayscale image. The public benchmark
based on this data consists of all of the grayscale and color
segmentations for 300 images. The images are divided into a
training set of 200 images and a test set of 100 images.

Youtube-Objects [158] contains videos collected from
YouTube, which include objects from ten PASCAL VOC
classes (aeroplane, bird, boat, car, cat, cow, dog, horse,
motorbike, and train). The original dataset did not contain
pixel-wise annotations (as it was originally developed for
object detection, with weak annotations). However, Jain et
al. [159] manually annotated a subset of 126 sequences, and
then extracted a subset of frames to further generate semantic
labels. In total, there are about 10,167 annotated 480x360 pixel
frames available in this dataset.

CamVid: is another scene understanding database (with
a focus on road/driving scenes) which was originally cap-
tured as five video sequences via camera mounted on the
dashboard of a car. A total of 701 frames were provided by
sampling from the sequences. These frames were manually
annotated into 32 classes.

KITTI [160] is one of the most popular datasets for
autonomous driving, containing videos of traffic scenarios,
recorded with a variety of sensor modalities (including high-
resolution RGB, grayscale stereo cameras, and a 3D laser
scanners). The original dataset does not contain ground truth
for semantic segmentation, but researchers have manually
annotated parts of the dataset; e.g., Alvarez et al. [161] gen-
erated ground truth for 323 images from the road detection
challenge with 3 classes—road, vertical, and sky.

Other datasets for image segmentation purposes in-
clude Semantic Boundaries Dataset (SBD) [162], PASCAL
Part [163], SYNTHIA [164], and Adobe’s Portrait Segmen-
tation [165].
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Fig. 37. A sample from the NYU V2 dataset. From left: RGB image,
pre-processed depth image, class labels map. From [166].

4.2 2.5D Datasets

With the availability of affordable range scanners, RGB-D
images have became increasingly widespread. The following
RGB-D datasets are among the most popular:

NYU-Depth V2 [166] consists of video sequences from
a variety of indoor scenes, recorded by the RGB and depth
cameras of the Microsoft Kinect. It includes 1,449 densely
labeled RGB and depth image pairs of more than 450 scenes
taken from 3 cities. Each object is labeled with a class and
instance number (e.g., cup1, cup2, cup3, etc.). It also contains
407,024 unlabeled frames. Fig. 37 shows an RGB-D sample
and its label map.

SUN-3D [167] is a large RGB-D video dataset that
contains 415 sequences captured from 254 different spaces
in 41 different buildings; 8 sequences are annotated and
more will be annotated in the future. Each annotated frame
provides the semantic segmentation of the objects in the
scene as well as information about the camera pose.

SUN RGB-D [168] provides an RGB-D benchmark for ad-
vancing the state-of-the-art of all major scene understanding
tasks. It is captured by four different sensors and contains
10,000 RGB-D images at a scale similar to PASCAL VOC.

ScanNet [169] is an RGB-D video dataset containing 2.5
million views in more than 1,500 scans, annotated with
3D camera poses, surface reconstructions, and instance-
level semantic segmentations. To collect these data, an easy-
to-use and scalable RGB-D capture system was designed
that includes automated surface reconstruction, and the
semantic annotation was crowd-sourced. Using this data
helped achieve state-of-the-art performance on several 3D
scene understanding tasks, including 3D object classification,
semantic voxel labeling, and CAD model retrieval.

Stanford 2D-3D [170] provides a variety of mutually
registered 2D, 2.5D, and 3D modalities, with instance-level
semantic and geometric annotations, acquired from 6 indoor
areas. It contains over 70,000 RGB images, along with the
corresponding depths, surface normals, semantic annota-
tions, as well as global XYZ images, camera information, and
registered raw and semantically annotated 3D meshes and
point clouds.

Another popular 2.5D datasets is UW RGB-D Object
Dataset [171], which contains 300 common household objects
recorded using a Kinect-style sensor.

5 DL SEGMENTATION MODEL PERFORMANCE

In this section, we summarize the metrics commonly used
in evaluating the performance of segmentation models and
report the performance of DL-based segmentation models
on benchmark datasets.

5.1 Metrics for Image Segmentation Models

Ideally, an image segmentation model should be evaluated
in multiple respects, such as quantitative accuracy, visual
quality, speed (inference time), and storage requirements
(memory footprint). However, most researchers to date have
focused on metrics for quantifying model accuracy. The
following metrics are most popular:

Pixel accuracy is the ratio of properly classified pixels
divided by the total number of pixels. For K + 1 classes (K
foreground classes and the background) pixel accuracy is
defined as

PA =

∑K
i=0 pii∑K

i=0

∑K
j=0 pij

, (1)

where pij is the number of pixels of class i predicted as
belonging to class j.

Mean Pixel Accuracy (MPA) is an extension of PA, in
which the ratio of correct pixels is computed in a per-class
manner and then averaged over the total number of classes:

MPA =
1

K + 1

K∑
i=0

pii∑K
j=0 pij

. (2)

Intersection over Union (IoU), or the Jaccard Index, is
defined as the area of intersection between the predicted
segmentation map A and the ground truth map B, divided
by the area of the union between the two maps, and ranges
between 0 and 1:

IoU = J(A,B) =
|A ∩B|
|A ∪B|

. (3)

Mean-IoU is defined as the average IoU over all classes.
Precision / Recall / F1 score can be defined for each class,

as well as at the aggregate level, as follows:

Precision =
TP

TP + FP
; Recall =

TP
TP + FN

, (4)

where TP refers to the true positive fraction, FP refers to the
false positive fraction, and FN refers to the false negative
fraction. Usually one is interested in a combined version
of precision and recall rates; the F1 score is defined as the
harmonic mean of precision and recall:

F1 =
2 Precision Recall
Precision + Recall

. (5)

Dice coefficient, commonly used in medical image analy-
sis, can be defined as twice the overlap area of the predicted
and ground-truth maps divided by the total number of pixels.

Dice =
2|A ∩B|
|A|+ |B|

. (6)

It is very similar to the IoU (3) and when applied to
binary maps, with foreground as the positive class, the Dice
coefficient is identical to the F1 score (7):

Dice =
2TP

2TP + FP + FN
= F1. (7)
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TABLE 1
Accuracies of segmentation models on the PASCAL VOC test set

Method Backbone mIoU

FCN [30] VGG-16 62.2
CRF-RNN [38] - 72.0
CRF-RNN∗ [38] - 74.7
BoxSup* [119] - 75.1
Piecewise∗ [39] - 78.0
DPN∗ [40] - 77.5
DeepLab-CRF [76] ResNet-101 79.7
GCN∗ [120] ResNet-152 82.2
Dynamic Routing [142] - 84.0
RefineNet [117] ResNet-152 84.2
Wide ResNet [121] WideResNet-38 84.9
PSPNet [54] ResNet-101 85.4
DeeplabV3 [13] ResNet-101 85.7
PSANet [98] ResNet-101 85.7
EncNet [116] ResNet-101 85.9
DFN∗ [99] ResNet-101 86.2
Exfuse [122] ResNet-101 86.2
SDN* [43] DenseNet-161 86.6
DIS [125] ResNet-101 86.8
APC-Net∗ [58] ResNet-101 87.1
EMANet [95] ResNet-101 87.7
DeeplabV3+ [81] Xception-71 87.8
Exfuse [122] ResNeXt-131 87.9
MSCI [59] ResNet-152 88.0
EMANet [95] ResNet-152 88.2
DeeplabV3+∗ [81] Xception-71 89.0
EfficientNet+NAS-FPN [137] - 90.5

∗ Models pre-trained on other datasets (MS-COCO, ImageNet, etc.).

5.2 Quantitative Performance of DL-Based Models

In this section we tabulate the performance of several
of the previously discussed algorithms on popular seg-
mentation benchmarks. Although most publications report
model performance on standard datasets and use standard
metrics, some of them fail to do so, making across-the-board
comparisons difficult. Furthermore, only a few publications
provide additional information, such as execution time and
memory footprint, in a reproducible way, which is important
to industrial applications (such as drones, self-driving cars,
robotics, etc.) that may run on embedded systems with
limited computational power and storage, thus requiring
light-weight models.

The following tables summarize the performances of
several of the prominent DL-based segmentation models on
different datasets:

Table 1 focuses on the PASCAL VOC test set. Clearly,
there has been much improvement in the accuracy of the
models since the introduction of the first DL-based image
segmentation model, the FCN.

Table 2 focuses on the Cityscape test dataset. The latest
models feature about 23% relative gain over the pioneering
FCN model on this dataset.

Table 3 focuses on the MS COCO stuff test set. This
dataset is more challenging than PASCAL VOC, and
Cityescapes, as the highest mIoU is approximately 40%.

Table 4 focuses on the ADE20k validation set. This
dataset is also more challenging than the PASCAL VOC
and Cityescapes datasets.

Table 5 provides the performance of prominent instance
segmentation algorithms on COCO test-dev 2017 dataset, in
terms of average precision, and their speed.

TABLE 2
Accuracies of segmentation models on the Cityscapes dataset

Method Backbone mIoU

SegNet [25] - 57.0
FCN-8s [30] - 65.3
DPN [40] - 66.8
Dilation10 [77] - 67.1
DeeplabV2 [76] ResNet-101 70.4
RefineNet [117] ResNet-101 73.6
FoveaNet [126] ResNet-101 74.1
Ladder DenseNet [127] Ladder DenseNet-169 73.7
GCN [120] ResNet-101 76.9
DUC-HDC [78] ResNet-101 77.6
Wide ResNet [121] WideResNet-38 78.4
PSPNet [54] ResNet-101 85.4
BiSeNet [128] ResNet-101 78.9
DFN [99] ResNet-101 79.3
PSANet [98] ResNet-101 80.1
DenseASPP [79] DenseNet-161 80.6
Dynamic Routing [142] - 80.7
SPGNet [129] 2xResNet-50 81.1
DANet [91] ResNet-101 81.5
CCNet [96] ResNet-101 81.4
DeeplabV3 [13] ResNet-101 81.3
IPC [141] ResNet-101 81.8
AC-Net [131] ResNet-101 82.3
OCR [42] ResNet-101 82.4
ResNeSt200 [93] ResNeSt-200 82.7
GS-CNN [130] WideResNet 82.8
HA-Net [94] ResNext-101 83.2
HRNetV2+OCR [42] HRNetV2-W48 83.7
Hierarchical MSA [139] HRNet-OCR 85.1

TABLE 3
Accuracies of segmentation models on the MS COCO stuff dataset

Method Backbone mIoU

RefineNet [117] ResNet-101 33.6
CCN [57] Ladder DenseNet-101 35.7
DANet [91] ResNet-50 37.9
DSSPN [132] ResNet-101 37.3
EMA-Net [95] ResNet-50 37.5
SGR [133] ResNet-101 39.1
OCR [42] ResNet-101 39.5
DANet [91] ResNet-101 39.7
EMA-Net [95] ResNet-50 39.9
AC-Net [131] ResNet-101 40.1
OCR [42] HRNetV2-W48 40.5

Table 6 provides the performance of prominent panoptic
segmentation algorithms on MS-COCO val dataset, in terms
of panoptic quality [143].

Finally, Table 7 summarizes the performance of several
prominent models for RGB-D segmentation on the NYUD-v2
and SUN-RGBD datasets.

In summary, we have witnessed been significant im-
provement in the performance of deep segmentation models
over the past 5–6 years, with a relative improvement of
25%-42% in mIoU on different datasets. However, some
publications suffer from lack of reproducibility for multiple
reasons—they report performance on non-standard bench-
marks/databases, or only on arbitrary subsets of the test
set from a popular benchmark, or they do not adequately
describe the experimental setup and sometimes evaluate
model performance only on a subset of object classes. Most
importantly, many publications do not provide the source-
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TABLE 4
Accuracies of segmentation models on the ADE20k validation dataset

Method Backbone mIoU

FCN [30] - 29.39
DilatedNet [77] - 32.31
CascadeNet [134] - 34.90
RefineNet [117] ResNet-152 40.7
PSPNet [54] ResNet-101 43.29
PSPNet [54] ResNet-269 44.94
EncNet [116] ResNet-101 44.64
SAC [135] ResNet-101 44.3
PSANet [98] ResNet-101 43.70
UperNet [136] ResNet-101 42.66
DSSPN [132] ResNet-101 43.68
DM-Net [56] ResNet-101 45.50
AC-Net [131] ResNet-101 45.90
ResNeSt-101 [93] ResNeSt-101 46.91
ResNeSt-200 [93] ResNeSt-200 48.36

TABLE 5
Instance segmentation model performance on COCO test-dev 2017

Method Backbone FPS AP

YOLACT-550 [74] R-101-FPN 33.5 29.8
YOLACT-700 [74] R-101-FPN 23.8 31.2
RetinaMask [172] R-101-FPN 10.2 34.7
TensorMask [67] R-101-FPN 2.6 37.1
SharpMask [173] R-101-FPN 8.0 37.4
Mask-RCNN [62] R-101-FPN 10.6 37.9
CenterMask [72] R-101-FPN 13.2 38.3

code for their model implementations. Fortunately, with the
increasing popularity of deep learning models, the trend
has been positive and many research groups are moving
toward reproducible frameworks and open-sourcing their
implementations.

6 CHALLENGES AND OPPORTUNITIES

Without a doubt, image segmentation has benefited greatly
from deep learning, but several challenges lie ahead. We will
next discuss some of the promising research directions that
we believe will help in further advancing image segmenta-
tion algorithms.

TABLE 6
Panoptic segmentation model performance on MS-COCO val

Method Backbone PQ

Panoptic FPN [144] ResNet-50 39.0
Panoptic FPN [144] ResNet-101 40.3
AU-Net [145] ResNet-50 39.6
Panoptic-DeepLab [147] Xception-71 39.7
OANet [174] ResNet-50 39.0
OANet [174] ResNet-101 40.7
AdaptIS [175] ResNet-50 35.9
AdaptIS [175] ResNet-101 37.0
UPSNet∗ [148] ResNet-50 42.5
OCFusion∗ [176] ResNet-50 41.3
OCFusion∗ [176] ResNet-101 43.0
OCFusion∗ [176] ResNeXt-101 45.7

∗ Use of deformable convolution.

TABLE 7
Segmentation model performance on the NYUD-v2 and SUN-RGBD

NYUD-v2 SUN-RGBD

Method m-Acc m-IoU m-Acc m-IoU

Mutex [177] - 31.5 - -
MS-CNN [178] 45.1 34.1 - -
FCN [30] 46.1 34.0 - -
Joint-Seg [179] 52.3 39.2 - -
SegNet [25] - - 44.76 31.84
Structured Net [39] 53.6 40.6 53.4 42.3
B-SegNet [180] - - 45.9 30.7
3D-GNN [181] 55.7 43.1 57.0 45.9
LSD-Net [46] 60.7 45.9 58.0 -
RefineNet [117] 58.9 46.5 58.5 45.9
D-aware CNN [182] 61.1 48.4 53.5 42.0
MTI-Net [183] 62.9 49 - -
RDFNet [184] 62.8 50.1 60.1 47.7
ESANet-R34-NBt1D [140] - 50.3 - 48.17
G-Aware Net [185] 68.7 59.6 74.9 54.5

6.1 More Challenging Datasets
Several large-scale image datasets have been created for
semantic segmentation and instance segmentation. However,
there remains a need for more challenging datasets, as well as
datasets of different kinds of images. For still images, datasets
with a large number of objects and overlapping objects would
be very valuable. This can enable the training of models that
handle dense object scenarios better, as well as large overlaps
among objects as is common in real-world scenarios. With
the rising popularity of 3D image segmentation, especially
in medical image analysis, there is also a strong need for
large-scale annotated 3D image datasets, which are more
difficult to create than their lower dimensional counterparts.

6.2 Combining DL and Earlier Segmentation Models
There is now broad agreement that the performance of DL-
based segmentation algorithms is plateauing, especially in
certain application domains such as medical image analysis.
To advance to the next level of performance, we must further
explore the combination of CNN-based image segmentation
models with prominent “classical” model-based image seg-
mentation methods. The integration of CNNs with graphical
models has been studied, but their integration with active
contours, graph cuts, and other segmentation models is fairly
recent and deserves further work.

6.3 Interpretable Deep Models
While DL-based models have achieved promising perfor-
mance on challenging benchmarks, there remain open
questions about these models. For example, what exactly
are deep models learning? How should we interpret the
features learned by these models? What is a minimal
neural architecture that can achieve a certain segmentation
accuracy on a given dataset? Although some techniques
are available to visualize the learned convolutional kernels
of these models, a comprehensive study of the underlying
behavior/dynamics of these models is lacking. A better
understanding of the theoretical aspects of these models
can enable the development of better models curated toward
various segmentation scenarios.
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6.4 Weakly-Supervised and Unsupervised Learning
Weakly-supervised (a.k.a. few shot) learning [186] and un-
supervised learning [187] are becoming very active research
areas. These techniques promise to be specially valuable for
image segmentation, as collecting pixel-accurately labeled
training images is problematic in many application domains,
particularly so in medical image analysis. The transfer
learning approach is to train a generic image segmentation
model on a large set of labeled samples (perhaps from
a public benchmark) and then fine-tune that model on a
few samples from some specific target application. Self-
supervised learning is another promising direction that is
attracting much attraction in various fields. With the help
of self-supervised learning, many details in images can be
captured in order to train segmentation models with far
fewer training samples. Models based on reinforcement
learning could also be another potential future direction, as
they have scarcely received attention for image segmentation.
For example, MOREL [188] introduced a deep reinforcement
learning approach for moving object segmentation in videos.

6.5 Real-time Models for Various Applications
In many applications, accuracy is the most important factor;
however, there are applications in which it is also critical
to have segmentation models that can run in near real-time,
or at common camera frame rates (at least 25 frames per
second). This is useful for computer vision systems that are,
for example, deployed in autonomous vehicles. Most of the
current models are far from this frame-rate; e.g., FCN-8 takes
roughly 100 ms to process a low-resolution image. Models
based on dilated convolution help to increase the speed of
segmentation models to some extent, but there is still plenty
of room for improvement.

6.6 Memory Efficient Models
Many modern segmentation models require a significant
amount of memory even during the inference stage. So
far, much effort has been directed towards improving the
accuracy of such models, but in order to fit them into
specific devices, such as mobile phones, the networks must be
simplified. This can be done either by using simpler models,
or by using model compression techniques, or even by
training a complex model and using knowledge distillation
techniques to compress it into a smaller, memory efficient
network that mimics the complex model.

6.7 Applications
DL-based segmentation methods have been successfully
applied to satellite images in remote sensing [189], such as to
support urban planning [190] and precision agriculture [191].
Images collected by airborne platforms [192] and drones [193]
have also been segmented using DL-based segmentation
methods in order to address important environmental prob-
lems including ones related to climate change. The main
challenges of the remote sensing domain stem from the
typically formidable size of the imagery (often collected by
imaging spectrometers with hundreds or even thousands of
spectral bands) and the limited ground-truth information
necessary to evaluate the accuracy of the segmentation

algorithms. Similarly, DL-based segmentation techniques in
the evaluation of construction materials [194] face challenges
related to the massive volume of the related image data and
the limited reference information for validation purposes.
Last but not least, an important application field for DL-
based segmentation has been biomedical imaging [195]. Here,
an opportunity is to design standardized image databases
useful in evaluating new infectious diseases and tracking
pandemics [196].

7 CONCLUSIONS

We have surveyed image segmentation algorithms based
on deep learning models, which have achieved impres-
sive performance in various image segmentation tasks and
benchmarks, grouped into architectural categories such as:
CNN and FCN, RNN, R-CNN, dilated CNN, attention-
based models, generative and adversarial models, among
others. We have summarized the quantitative performance
of these models on some popular benchmarks, such as
the PASCAL VOC, MS COCO, Cityscapes, and ADE20k
datasets. Finally, we discussed some of the open challenges
and promising research directions for deep-learning-based
image segmentation in the coming years.
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